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LETTER TO THE EDITOR 

Critical behaviour of the long-range interaction model on a 
fractal lattice 

K Uzelact 
Laboratoire de Physique des Solides, Universiti Paris-Sud, 91405 Orsay, France 

Received 4 August 1989 

Abstract. A particular class of fractal lattices is considered where the Ising model with 
power law decaying interactions can be well approximated to a hierarchical-type model. 
Applying the exact recurrence relations, the critical behaviour is calculated and its univer- 
sality with respect to the fractal dimensionality D is examined. 

Recently Penrose (1986) has generalised the result of Dyson (1969) for the existence 
of the phase transition in a I D  Ising model to a very general class of fractal lattices. 
Considering an Ising ferromagnet described by the Hamiltonian 

where the interactions between sites i and j decay as a power law, i.e. Ji,-,l- / i  -jl-a, 
he showed that it has a transition at finite temperature for D < a < 2 0 ,  where D is 
the fractal dimensionality of the lattices considered. He pointed out the interest of 
studying the critical behaviour of such systems. Namely, extensive studies have already 
been made for systems with short-range interactions (Gefen et al 1983, 1984), which 
show the great diversity in critical behaviour and the absence of the universality with 
respect to the fractal dimensionality D. One could expect that longer range of interac- 
tions might have the effect of increasing the degree of universality. 

In the present letter we select the class of lattices for which some analytical results 
can be obtained. It is a subclass of lattices considered by Penrose to which under 
certain approximations the exact RG procedure can be applied and whose critical 
behaviour can be studied for arbitrary a and D. 

Fractal lattices considered by Penrose are built by starting from a generating set 
consisting of m points having some spatial distribution. At each step of iteration all 
the distances are augmented by a factor b and every isolated point is replaced by the 
initial generating set. Iterating this procedure, one obtains a lattice with fractal 
dimension D =In m/ln b. A simple example of such a lattice is represented in figure 
1. Due to the long-range interactions the renormalisation of model (1) on such a lattice 
is as difficult as on the regular lattice. However, we can select a subclass of those 
lattices with a pronounced hierarchical structure (as the one chosen in figure 1) in 
order to approximate (1) to a hierarchical model which can be renormalised exactly 
(Baker 1972). The generating set at some level p will then be considered as a block 
spin S, at this level. For this purpose two approximations are necessary. 
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( a )  [ bl 
Figure 1. Example of fractal lattice with m = 3, b = 4 and D = 0.79: ( a )  the generating set; 
( b )  the lattice after two iterations. 

( i)  Interactions between two spins belonging to neighbouring blocks of the same 
level should depend only on the distance between blocks regardless of their position 
inside the block (for the example on figure 1 this means that the interactions between 
spins So,, and So,4 or So,2 and So,3 are taken to be equal). 

(ii) Interactions between any two spins in the same block are taken to be equal. 
Approximation ( i )  is justified when b is sufficiently large. Approximation (ii)  depends 
on the disposition of sites in space and the requirement is fulfilled exactly when the 
generating set forms a hypertetrahedron. 

By carrying those two approximations through at all levels, the Hamiltonian (1) is 
reduced to the form 

N mJw-l ,  

H = -  1 A P  1 S; , , -HS, l  
p = l  r = l  

where Sp,r represents a block spin at the pth level involving m lower block spins: 

m v  

sp,r = 2 sp-,,i 
i =  ( m - - l ) r + l  

(3) 

and the interaction is given by A = b-". The form ( 2 )  represents a hierarchical model. 
Notice, however, the particular meaning of the parameter A in the present case. Its 
form is not imposed by the hierarchy of the interactions, but by the fractal structure 
of the lattice and this will have to be taken into account within the renormalisation 
group (RG) procedure. Otherwise we can follow the calculations already existing for 
a hierarchical model. For the present purpose it is appropriate to use the RG approach 
in direct space which Kim and Thompson (1977) have applied to the one-dimensional 
hierarchical model. It is almost straightforward to generalise their procedure to our 
case. We repeat here the principal lines of their calculation generalising them to 
arbitrary b and m. 
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The procedure consists of decoupling the spins at the highest level ( p  = N )  by the 
use of the Hubbard-Stratonovich transformation, which gives for the partition function 

the following recurrence relation: 
m 

Z,(P, H )  =L { exp(-x')[Z,-,(p, H+ANi2@x)Im dx. ( 5 )  J;; -m 

In ternis of the spin probability distribution defined as 

PN(@ A H N i 2 / 2 )  = Z",_,(P, H )  ( 6 )  

it has the more tractable form 

Following the analogy with the earlier special case, one easily finds the Gaussian 
fixed point 

P*(x)  = (mA)m/2(m-1j  oexp[(l -mA)x2]. (8) 

The analysis around the Gaussian fixed point is done by writing the spin probability 
function in the form 

P ( x )  = P*(x)h(vx) (9) 

which yields the same type of integral equation for the function h(x)  

By expanding h(x)  in Hermite polynomials 
00 

h ( x ) =  C AkHZk(UX) 
k = l  

equation (IO) is reduced to the infinite system of algebraic equations 

which leads to recurrence relations for the coefficients Ak. 

terms linear in Ak in (12). Up to this order the recurrence relations for Ak are 
The stability of the Gaussian fixed point can be examined by keeping only the 

For a > D the parameter AI  corresponding to the largest eigenvalue is relevant. All 
the parameters for k 3 2 remain irrelevant for a < a ,  = 3 0 / 2 ,  which determines the 
limits of the mean-field critical behaviour. The eigenvalue of Al  is equal to and 
gives the critical exponent y1 = 1/ v = a - D. If we define the usual long-range parameter 
U through the lattice fractal dimension D instead of the embedding dimension d, 
a = D +  U, then we recover the usual mean-field expression v = l/a. Notice that the 
upper U limit for the mean field U,= D / 2  depends uniquely on D. 
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The non-trivial region U >  uc can be approached either numerically or by an 
&-expansion around uc. Since we are particularly interested in analytic expression in 
order to examine the universality of critical exponents, we proceed with the &-expansion 
which we perform to the order of s2.  Parameter E is proportional to Au = U - uc and 
is defined by E = Au 0 In b. After some algebra we obtain from (12) the recursion 
relations for Ak to the O ( s 3 ) :  

+ 
6 k ' =  1 

m ( m - l ) ( m - 2 )  + c A k , A k z A k 3  Tk',kz,k3 Tk,k',kl 6 k , , k , , k , , k ' = l  

where 

and 

for I k, - k21 6 k s kl + k,, and zero otherwise. 
The fixed point Ak is to be determined to order E ' .  By inspection of (14), (15) and 

(16) one can easily verify that the order of Ak increases with k. As in a special case 
considered by Kim and Thompson, only the first four parameters have order less than 
or equal to g2, A, being proportional to E.  They are given by 

& 
A ; = -  (7m + 16&+ 1 )  

72( m - 1) -216( m - 1)' 

and 

m ( m  - 1 )  __ 
A : =  ~ Tk,2,2A;z/(Jmk(l-E)k-m) for k = l , 3 , 4 .  (18) 

L 

After a standard but lengthy procedure of linearising and diagonalising the system 
(14) around the non-trivial fixed point, one obtains as the only relevant eigenvalue 

E 2  
(7m + 32& + 9) 

3 1 8 ( m - 1 )  

which gives for the critical exponent v P 1 =  In A Jln b in the following expression: 

Y-'=-+--- D Au  ACT)^ m+4&+1 I n m  
2 3  9 m - 1  D '  

To first order in E ,  the critical exponent depends only on D. It matches the results 
for both the hierarchical model (Baker and Golner 1977) and one-component long- 
range n-vector model (Fisher et a1 1972) if the fractal dimension D is replaced by the 
Euclidean dimension d. However, to second order in E the previous two models differ; 
in our case an additional dependence on parameter m appears. Parameter m represents 
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the number of particles, but due to our approximation (ii) it is related to the embedding 
dimension of the lattice (if we fulfil the requirement (ii) exactly and consider tetra- 
hedrons m = d - 1). The above calculations, however, do not permit the determination 
of whether it is the embedding dimension that manifests itself through the parameter 
m or another detail of the fractal lattice. 

In conclusion, we have selected a particular class of fractal lattices for which the 
exact RG analysis can be performed in the case of long-range interactions. Our results 
show that in this case the limit of the mean-field region depends only on the fractal 
dimensionality and is given by uc = D/2.  On the other hand, the analytic expression 
for the exponent v shows the breakdown of the universality in the second order of 
the &-expansion around the mean-field threshold U=,  with the appearance of an 
additional parameter. It would be interesting to better understand the nature of the 
loss of the universality, i.e. whether it could be re-established by taking into account 
only the embedding dimension. 

I thank 0 Penrose for bringing the work of Kim and Thompson to my attention. I 
am grateful to R Jullien for useful and stimulating discussions. This work has been 
supported in part by the Yu-US DOE grant PN 738. 
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